
Estimating Exponential A¢ ne Models With Correlated

Measurement Errors:Applications to Fixed Income and

Commodities�

M.A.H. Dempstery

Centre for Financial Research, Statistical Laboratory, University of Cambridge

& Cambridge Systems Associates Limited

Email:mahd2@cam.ac.uk

Ke Tang

Hanqing Advanced Institute of Economics and Finance and School of Finance

Renmin University of China

Email:ketang@ruc.edu.cn

April 12, 2010

�We are grateful for extensive discussions with Han Hong of Stanford University and Hao Zhou of the Federal
Reserve Bank.

yContact author.



Estimating Exponential A¢ ne Models With Correlated Measurement Errors:

Applications to Fixed Income and Commodities

April 12, 2010

Abstract

Exponential a¢ ne models (EAMs) are factor models popular in �nancial asset pricing

requiring a dynamic term structure, such as for interest rates and commodity futures. When

implementing EAMs it is usual to �rst specify the model in state space form (SSF) and then to

estimate it using the Kalman �lter. To specify the SSF, a structure of the measurement error

must be provided which is not speci�ed in the EAM itself. Di¤erent speci�cations of the

measurement errors will result in di¤erent SSFs, leading to di¤erent parameter estimates.

In this paper we investigate the in�uence of the measurement error speci�cation on the

parameter estimates. Using market data for both �xed income and commodities we provide

evidence that measurement errors are cross-sectionally and serially correlated, which is not

consistent with the independent identically distributed (iid) assumptions commonly adopted

in the literature. Using simulated data we show that measurement error assumptions a¤ect

parameter estimates, especially in the presence of serial correlation. We provide a new

speci�cation, the augmented state space form (ASSF), as a solution to these biases and show

that the ASSF gives much better estimates than the basic SSF.

Keywords: exponential a¢ ne model, state space form, Kalman �lter, EM algorithm,

measurement errors, serial correlation, commodity futures, yield curves

JEL Codes: G12, G13

1



1 Introduction

Exponential a¢ ne models (EAMs) are important, and commonly-used, models in the asset pricing

arena, especially in the term-structure modeling of �xed income securities and commodity futures.

EAMs model �nancial instruments such as zero-coupon bonds and commodity futures as a function

of latent factors and time-to-maturity. There are many well-known studies on �nancial instruments

using EAMs. For the literature on interest rate term-structure modeling and estimation, we refer

the reader to Chen and Scott (1993), De Munnik and Schotman (1994), Duan and Simonato

(1999), De Jong and Santa-Clara (1999), De Jong (2000), Dai and Singleton (2000), Zhou (2001),

Chen and Scott (2003) and Christensen et al. (2007). For the commodity literature, see Schwartz

(1997), Schwartz and Smith (2000), Geman and Nguyen (2005), Casassus and Collin-Dufresne

(2005) and Dempster, Medova and Tang (2008, 2009).

The main di¢ culty involved in estimating EAMs is that their factors (or state variables) are

latent, i.e. not directly observable. Several calibration methods have been proposed to solve this

problem, such as the use of proxies for the latent factors (Marsh and Rosenfeld, 1983 and Daves and

Ehrhardt, 1993), the e¢ cient method of moments (EMM) (Gallant and Tauchen, 1996) and the

Chen and Scott (1993) method. In the context of EAMs, the logarithms of �nancial instrument

prices are speci�ed using an a¢ ne function of the latent variables. For models with Gaussian

factors, the Kalman �lter is appropriate for the estimation of EAM parameters and is commonly

believed to be the best estimator for linear Gaussian models. For models with non-Gaussian factors

of Cox-Ingersoll-Ross (CIR) type, the extended Kalman �lter is often used for model calibration.

Du¤ee and Stanton (2004) compare several parameter estimation methods and conclude that the

(extended) Kalman �lter is the best for such non-Gaussian models. We refer readers to Duan

and Simonato (1999), De Jong (2000) and Du¤ee and Stanton (2004) for the application of the

extended Kalman �lter to interest rate modeling. De Jong (2000) calibrates interest rate models

using one, two and three non-Gaussian latent factors. Using simulated data in which measurement

errors are cross-sectionally and serially uncorrelated, he �nds that the Kalman �lter gives quite

precise parameter estimates. Note that before estimating EAMs using the Kalman �lter, an EAM
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must �rst be written in state-space form (SSF).

When the number of contracts is the same as the number of latent factors, the factors can be

identi�ed with the contracts which can be priced exactly (Chen and Scott, 1993 and Casassus and

Collin-Dufresne, 2005). However, nearly all of the cited papers use more market-observed contracts

than latent variables, and thus a speci�cation of measurement error is necessary. However, an

EAM itself is not su¢ cient to determine its state-space formulation because it does not address

the measurement error structure which must be speci�ed in order to implement a model. In other

words, an EAM together with the speci�cation of an error structure is required to estimate the

speci�ed model. Di¤erent formulations of measurement errors result in di¤erent state space forms

and, hence, in di¤erent parameter estimates. To the best of our knowledge, for all term structure

papers that use the Kalman �lter for model calibration, such as Duan and Simonato (1999), De

Jong (2000), Chen and Scott (2003) in the �xed income literature and Schwartz (1997), Schwartz

and Smith (2000), Geman and Nguyen (2005) in the commodity literature, the measurement

errors are assumed for computational convenience to be independently and identically distributed

(iid) and their covariance matrix is commonly assumed to be a diagonal matrix.1 However,

when calibrating interest rates models using one, two and three factor models, De Jong (2000)

�nds that both strong cross-sectional and serial correlations exist in the measurement errors.

Unfortunately, he does not provide a solution to the estimation problem. Figures 1, 2 and 3 show

that strong cross-sectional and serial correlations exist in measurement errors when using the one,

two and three factor models of Appendix C applied to oil futures. Thus, the iid assumption for

measurement errors is violated in term structure modeling for both interest rates and commodity

futures. It is of course not surprising that the movements of interest rates or futures prices of

similar maturities are highly correlated, both contemporaneously and individually over time, with

higher autocorrelation at higher observation frequencies. However, until now, no research has

investigated how this inconsistency in�uences parameter estimates and, more importantly, how

the resulting biases can be resolved. In this paper, we aim to �ll this gap by �rst showing that any

1In many cases, to reduce computational complexity, the standard deviations of the measurement errors of
di¤erent contracts are assumed to be identical; see Sorensen (2002).
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such inconsistency does a¤ect parameter estimation and then proposing a solution (that is, a new

SSF) to alleviate the problem. We emphasize commodity futures models in this paper because

the EAMs of commodity futures are relatively new and require further understanding. Moreover,

nearly all commodity models in the literature have been calibrated using the Kalman �lter.
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Figure 1: Measurement errors of the one-factor model applied to oil futures

This paper is organized as follows. Section 2 describes the structure and implementation of

EAMs. Section 3 investigates cross-sectional and serial correlation in measurement errors us-

ing both simulated and actual market data. Section 4 provides a solution to overcome the iid

assumptions violation and Section 5 concludes.

2 State-Space Formulation of the Exponential A¢ neModel

In this section we introduce the EAM and its state-space formulation.
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Figure 2: Measurement errors of the two-factor model applied to oil futures

2.1 The exponential a¢ ne model

We de�ne xt as the driving variable underlying the interest rate or commodity futures term

structure, which for example could be a short interest rate rt or the log spot price of a commodity

vt. Letting t; T and � := T � t denote the current time, contract maturity and time to maturity,

respectively, one can obtain the futures price of the commodity2 Ft(�) and zero coupon bond price

Pt(�) respectively as 3

Ft(�) = EQt [exp(vT )]; (1)

and

Pt(�) = EQt [exp(�
Z T

t

rsds)]; (2)

2Note that Ft(�) is often written as F (t; T ) in the commodity literature.
3Throughout the paper we use boldface to denote random or conditionally random entities.
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Figure 3: Measurement errors of the three-factor model applied to oil futures

where vt denotes the logarithm of a commodity spot price, rt denotes an instantaneous short

interest rate and the conditional expectations at t are taken under the risk-neutral measure Q.

We follow Du¢ e and Kan (1996), Du¢ e, Pan and Singleton (2000), and Dai and Singleton

(2000) in introducing the canonical representation of an N -factor state vector Y t driving the

movement of xt (vt or rt) as

xt = �0 + �Y
0Y t;

where �0 is a constant, �Y is an N � 1 vector, and Y t = (Y 1;t;Y 2;t; : : : ;Y N;t)
0 is a vector of

N state variables. These variables follow a square root di¤usion process under the risk-neutral

measure Q satisfying

dY t = K(�� Yt)dt+ �
p
�tdW

Q
t ; (3)
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where K and � are both N � N constant matrices, � is an N � 1 vector and WQ
t is an N � 1

vector of independent Brownian motions. Conditional on Y t, �t is a diagonal matrix with the ith

diagonal element given by

�t;ii = �i + 
0iYt: (4)

Assuming that the parameterization is admissible, it is easy to show that given Yt both Ft(�) and

Pt(�) can be obtained in the form

Zt(�) = exp[A(�) +B0(�)Yt]; (5)

where Zt(�) represents either Ft(�) or Pt(�), A(�) is a constant and B(�) is an N � 1 vector,

all depending on � . Because the price Zt(�) can be written in terms of the latent factors Yt in

an exponential a¢ ne form, a model of this kind is termed an exponential a¢ ne model (EAM).

De�ning zt(�) := ln(Zt(�)), the new variable has the a¢ ne structure

zt(�) = A(�) +B0(�)Yt: (6)

Letting U := (
1; : : : ; 
N) denote the matrix of coe¢ cients of Y in � and de�ning m :=

rank(U); (m � N) indexes the degree of dependence of the conditional covariance on the state

variables. Dai and Singleton (2000) classify each EAM into one of N +1 subfamilies Am(N) based

on the value of m.

In the market (physical) measure P (i.e., the data-generating measure) the risk premium

process �t is speci�ed through

dWQ
t = �tdt+ dW P

t ; (7)

where �t :=
p
�� (given Yt) and � is an N � 1 vector of constants. Thus in the market measure

(3) becomes

dY t = eK(e�� Yt)dt+ �
p
�dW P

t ; (8)

7



where eK = K � �U; e� = eK�1(K� + � ), the ith row of the N � N matrix U is given by �i
0i

and  is an N � 1 vector with ith element given by �i�i. Note that this speci�cation of the risk

premia allows the factor process Y t also to follow the a¢ ne form of (3) in the market measure.

Given the factor processes in the risk-neutral and market measures, to estimate the parameters

of the EAM from market data we must �rst specify the measurement error structure in the state

space form (SSF) of the model and then use the Kalman �lter in estimating parameters. In the

next section, we discuss a basic SSF of the EAM.

2.2 Basic state space form

The SSF normally consists of a transition equation and a measurement equation in discrete time.

The transition equation describes the evolution of the stochastic process of the latent state variables

in the market measure. The measurement equation relates a multivariate time series of observable

variables to the latent (unobservable) state variables and is commonly related to the risk-neutral

process. In this section, we discuss in detail the basic state space form which comes directly from

the factor process under the market and risk-neutral measures.

The transition equation is given by discretizing (8) to yield

Y t = d+ �Yt�1 + �t; (9)

where d is aN�1 vector, � is aN�N matrix and �t is aN�1 normally distributed random vector

with mean 0 and covariance matrix 
t. The parameters of (9) are derived from the conditional

mean and variance of the factors as

E[Y tjYt�1] = d+ �Yt�1

var(�t) = var(Y tjYt�1) = 
(Yt�1) := 
t:

De Jong (2000) has shown that both E[Y tjYt�1] and var(�t) are a¢ ne functions of Yt�1. It is
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obvious that for A0(N) models, 
 is a constant and does not depend on Yt�1. In this case, the

Kalman �lter will lead to unbiased estimates for the EAM parameters. For Am6=0(N) models, if the

latent factors at t� 1 are known exactly, 
(Yt�1) will be a known function of the parameters and

the Kalman �lter will again generate unbiased estimates. However, because the �ltered estimatebYt�1 must be used instead of the (unknown) true value Yt�1 in the Kalman �lter iteration, there
will be some bias. Nevertheless, as suggested by Duan and Simonato (1999) and De Jong (2000),

the classical Kalman �lter recursions still give reasonable parameter estimates with the speci�ed

measurement errors.

Another important characteristic of the covariance matrix 
t is its positive semide�niteness.

However, this feature is not guaranteed in the discretized process in (9) because the CIR-type

factors given by (8) can not be guaranteed to be nonnegative in the Kalman �lter iterations.4

We thus follow Chen and Scott (2003) in replacing the negative estimates with zeros.5 Note

that we use the extended Kalman �lter (see e.g. De Jong 2000) to calibrate the A1;DS(3) and

A2;DS(3) CIR-type models. After obtaining the model parameters and latent factors, we check the

nonnegativity of the corresponding CIR-type factor estimates, i.e. of the volatility factor v in the

A1;DS(3) model, and the long-run mean factor � and volatility factor v in the A2;DS(3) model. It

turns out that all CIR-type factor estimates are positive.

The measurement equation (6) shows that an exact relation exists between the latent factors Yt

and the logarithm of the observed price zt(�). However, when using more observed price maturities

than factors, this relationship is overdetermined and cannot be satis�ed by all log prices. Thus the

speci�cation of a measurement error process is necessary to determine the measurement equation.

Observe that the inclusion of measurement errors also aims at capturing factors which are not

explicitly accounted for in the model, including, for example, sampling errors, bid-ask spreads and

non-simultaneity of the observations. A natural speci�cation is to add to (6) iid errors "t which

are usually assumed to be Gaussian. For non-Gaussian measurement errors we refer the reader

to, for example, Shephard (1994) for a treatment of t-distributed errors.

4We thank the referee for pointing this out.
5Chen and Scott (2003) show by simulation, that this approximation works well in estimating CIR-type factors.
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Therefore, assuming there are M (M > N) observations at time t, the measurement equation

is speci�ed as

Z t = A+ BYt + "t (10)

whereZt = (zt(� 1); :::; zt(�M))0 andA = (A(� 1); :::; A(�M))0 areM�1 vectors and B = (B(�); :::; B(�))0

is an M �N matrix. Note that here "t is a measurement error random vector which is joint nor-

mally distributed with mean zero and covariance matrix R. A standard assumption is that �t

in the transition equation and "t in the measurement equation are independent. Since, given the

EAM, this speci�cation of the SSF is relatively simple and straightforward, we term the state

space form given by (9) and (10) the basic SSF in order to distinguish it from the augmented SSF

proposed below. The basic SSF is employed in all papers that use the Kalman �lter for parameter

estimation. Appendix A sets out the Kalman �lter estimation algorithm adapted from Harvey

(1989). Before investigating in Section 3 how the speci�cation of the measurement error process

a¤ects the model parameter estimates, we brie�y examine in the next section the number of latent

factors required to specify an EAM.

2.3 Are three factors su¢ cient?

Many researchers such as Schwartz (1997) and de Jong (2000) have raised concerns that cross-

sectional and serial measurement error correlations may be caused by an incomplete model in

which the underlying dynamics are not fully captured. In order to test how many factors are

enough to model a term-structure dataset, principal component analysis (PCA) is the method

commonly-used. In this section we use PCA on the oil futures data (i.e., 1, 3, 6, 9, 12, 15,

17 month contracts) and the interest rate term-structure data (i.e., 3, 6, 12, 24, 36, 48, 60, 84,

120 months rates) of Section 3.6 Table 1 shows the results. We see that three factors explain

more than 99.9% of the variance of both interest rate and oil futures movements in our data.

This is consistent with several studies, such as Litterman and Scheinkman (1991) and Cortazar

6Because PCA must be conducted on stationary data, we use here returns of futures contracts in the analysis.
Interest rates are commonly considered to be mean-reverting; thus we use the interest rates themselves in the
analysis, which is consistent with Litterman and Scheinkman (1991).

10



Table 1: PCA results for the oil futures and interest rates
variance explained �interest rates (%) variance explained �oil futures (%)

�rst factor 95.70 93.55
second factor 4.06 5.89
third factor 0.21 0.47
fourth factor 0.02 0.07
�fth factor 0.00 0.02

and Schwartz (1994). Moreover, using more than three factors may cause over-�tting. However,

as shown in Section 3.1, even for the three-factor interest rate and commodity futures models,

measurement errors still exhibit strong contemporaneous cross-sectional and serial correlations.

We may conclude that the usual iid assumptions for measurement errors are not appropriate for

EAMs. Speci�c measurement error treatments, such as that of the augmented SSF used in this

paper, are therefore necessary.

3 Measurement Error Cross-sectional and Serial Correla-

tion

In this section, we �rst test whether measurement errors are cross-sectionally and serially correlated

using actual market data and then using simulated data study how cross-sectional and serial

correlations a¤ect model parameter estimates.

3.1 Test of iid measurement errors

Using one, two and three factor models, De Jong (2000) has shown that strong cross-sectional and

serial correlations exist in the estimated measurement errors in interest rate term-structures.

Fixed Income

Here we con�rm these results using the three models set out in Appendix B. The �rst is a three

factor generalized Vasicek term structure model with which we have had considerable experience

for both asset-liability management (Dempster et al., 2006, 2007) and pricing (Dempster et al.,

2009) over long horizons using daily, weekly or monthly data as appropriate to the application.
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The second and third models are the A1;DS(3) and A2;DS(3) of Dai and Singleton (2000), which

they show are the preferable A1(3) and A2(3) models, respectively.7

To estimate these models, we use weekly interest rate data from the Federal Reserve (1987.07

to 2007.07, 1045 observations) with 3, 6, 12, 24, 36, 48, 60, 84, 120 months maturities. We �rst

obtain zero-coupon bond yields from the interest rates by a boot-strapping method, using the

fact that zero-coupon bond yield pt(�) is calculated by taking the logarithm of the zero price, i.e.

pt(�) := � ln(Pt(�))
�

. We employ the basic SSF given by (9) and (10) and use the Kalman �lter in the

EM algorithm to estimate parameters (see Appendix A). The standard deviation of measurement

errors for di¤erent contracts are assumed to be di¤erent, i.e. the covariance matrix of the "ts is

speci�ed as R := diag (�21; :::; �
2
9), where �1; :::; �9 are constant volatilities for the nine maturities.

An obvious way to check whether measurement errors violate the iid assumptions is to explore

the statistics of their residual estimates b"t (Harvey, 1989). Tables 2, 3 and 4 show the statistics
of the measurement errors, which show strong serial and cross-sectional correlations.8 Next we

examine another important application of EAMs, namely, commodity futures.

Commodities

Schwartz (1997) and Gibson and Schwartz (1990) provide one and two factor models and

Dempster, Medova and Tang (2009) present a three factor model.9 Appendix C sets out these

models. Since all three belong to the A0(N) (N = 1; 2; 3) family of EAMs, the Kalman �lter leads

to unbiased estimates under the iid assumptions on the measurement errors. We will test these

assumptions using the one, two and three factor models in the context of the oil markets.

We use weekly oil futures prices from the New York Mercantile Exchange (NYMEX) (1995.01

to 2006.02, 582 observations) with 1, 9, 17 month maturities to estimate the one- and two-factor

7We thank the referee for suggesting modeling A1(3) and A2(3) type models.
8For future comparison we also present here (and below) the results for the new state space form of model

discussed in Section 4.2.
9Note that Schwartz (1997) and Casassus and Collin-Dufresne (2005) also present three-factor models with

the third factor being stochastic interest rates. Because estimating their models involves information not only
from the commodity futures market but also from the �xed-income bond market, these models involve additional
complexities and thus neither is used here. Instead, we use the Dempster, Medova and Tang (2009) model as the
representative three-factor model.
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Table 2: Statistics of residuals b"t in the basic SSF and but in the augmented SSF for
the three factor generalized Vasicek interest rate model

Covariance matrix DW Serial correlation
Basic SSF

3 months 1.00 -0.62 -0.66 -0.40 0.26 0.30 0.12 -0.31 -0.37 0.33 0.84 (0.017)
6 months -0.62 1.00 0.17 -0.16 -0.20 0.06 0.12 0.06 0.05 1.42 0.29 ( 0.029)
12 months -0.66 0.10 1.00 0.58 -0.39 -0.31 -0.14 0.39 0.37 0.54 0.73 (0.021)
24 months -0.40 -0.16 0.58 1.00 -0.13 -0.56 -0.37 0.50 0.53 0.37 0.82 (0.018)
36 months 0.26 -0.28 -0.39 -0.13 1.00 -0.53 -0.51 0.04 0.27 1.27 0.37 (0.028)
48 months 0.31 0.06 -0.31 -0.56 -0.53 1.00 0.45 -0.59 -0.62 0.83 0.58 (0.025)
60 months 0.12 0.12 -0.14 -0.37 -0.51 0.45 1.00 -0.58 -0.58 0.49 0.75 (0.020)
72 months -0.31 0.06 0.39 0.50 0.04 -0.59 -0.58 1.00 0.33 0.67 0.67 (0.023)
120 months -0.37 0.05 0.37 0.53 0.27 -0.62 -0.58 0.33 1.00 0.29 0.86 (0.016)

ASSF
3 months 1.00 0.93 0.98 0.91 0.95 0.91 0.91 0.95 0.95 2.37 -0.19(0.030)
6 months 0.93 1.00 0.93 0.85 0.92 0.92 0.92 0.93 0.88 2.35 -0.18(0.031)
12 months 0.98 0.93 1.00 0.83 0.94 0.94 0.93 0.93 0.88 2.59 -0.29(0.030)
24 months 0.91 0.85 0.83 1.00 0.84 0.74 0.79 0.90 0.94 2.02 -0.01(0.030)
36 months 0.95 0.92 0.94 0.84 1.00 0.85 0.84 0.91 0.93 2.47 -0.24(0.030)
48 months 0.91 0.92 0.94 0.74 0.85 1.00 0.86 0.86 0.82 2.59 -0.30 (0.031)
60 months 0.91 0.92 0.93 0.79 0.84 0.86 1.00 0.87 0.79 2.49 -0.25(0.030)
72 months 0.95 0.93 0.93 0.90 0.91 0.86 0.87 1.00 0.87 2.38 -0.19(0.030)
120 months 0.95 0.88 0.88 0.94 0.93 0.82 0.79 0.87 1.00 2.17 -0.09(0.030)

Note that the Durbin-Watson (DW) statistic is about 1.43 for 1% signi�cant level. The
estimates of serial correlation b� are obtained from estimating "t = �"t�1 + et for each maturity
and the quantities in the brackets beside them are their estimated standard deviations. Boldface

denotes signi�cant at the 1% level.
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Table 3: Statistics of residuals b"t in the basic SSF and but in the augmented SSF for
the three factor A1;DS (3) interest rate model

Covariance matrix DW Serial correlation
Basic SSF

3 months 1.00 0.95 0.50 -0.50 -0.46 0.52 0.50 -0.03 -0.58 0.14 0.93 (0.011)
6 months 0.95 1.00 0.69 -0.36 -0.59 0.47 0.49 0.10 -0.60 0.26 0.87 (0.015)
12 months 0.50 0.69 1.00 0.19 -0.75 0.15 0.24 0.42 -0.37 0.98 0.51 (0.026)
24 months -0.50 -0.36 0.19 1.00 -0.29 -0.51 -0.41 0.58 0.31 0.50 0.75 (0.020)
36 months -0.46 -0.59 -0.75 -0.29 1.00 -0.52 -0.54 -0.16 0.51 0.80 0.60 (0.024)
48 months 0.52 0.47 0.15 -0.51 -0.52 1.00 0.71 -0.59 -0.49 0.72 0.64 (0.023)
60 months 0.50 0.49 0.24 -0.41 -0.54 0.71 1.00 -0.52 -0.57 0.34 0.82 (0.017)
72 months -0.03 0.10 0.42 0.58 -0.16 -0.59 -0.52 1.00 -0.17 0.79 0.60 (0.024)
120 months -0.58 -0.60 -0.37 0.31 0.51 -0.49 -0.57 -0.17 1.00 0.19 0.90 (0.013)

ASSF
3 months 1.00 0.90 0.73 -0.10 -0.12 0.12 0.21 0.41 0.38 2.23 -0.12 (0.030)
6 months 0.90 1.00 0.88 -0.02 -0.06 0.16 0.25 0.46 0.44 2.46 -0.23 (0.030)
12 months 0.73 0.88 1.00 0.09 0.06 0.19 0.29 0.46 0.45 2.77 -0.39 (0.028)
24 months -0.10 -0.02 0.09 1.00 0.84 0.85 0.73 0.76 0.82 2.25 -0.13 (0.029)
36 months -0.12 -0.06 0.06 0.84 1.00 0.78 0.58 0.65 0.73 2.44 -0.22 (0.029)
48 months 0.12 0.16 0.19 0.85 0.78 1.00 0.43 0.65 0.78 2.37 -0.18 (0.030)
60 months 0.21 0.25 0.29 0.73 0.58 0.43 1.00 0.81 0.85 2.42 -0.21 (0.029)
72 months 0.41 0.46 0.46 0.76 0.65 0.65 0.81 1.00 0.85 2.37 -0.19 (0.030)
120 months 0.38 0.44 0.45 0.82 0.73 0.78 0.85 0.85 1.00 2.24 -0.12 (0.030)
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Table 4: Statistics of residuals b"t in the basic SSF and but in the augmented SSF for
the three factor A2;DS (3) interest rate model

Covariance matrix DW Serial correlation
Basic SSF

3 months 1.00 0.97 0.69 -0.18 -0.52 0.27 0.37 0.15 -0.43 0.11 0.94 (0.010)
6 months 0.97 1.00 0.82 -0.04 -0.60 0.19 0.36 0.24 -0.45 0.19 0.91 (0.013)
12 months 0.69 0.82 1.00 0.34 -0.66 -0.03 0.22 0.41 -0.39 0.64 0.68 (0.022)
24 months -0.18 -0.04 0.34 1.00 -0.31 -0.52 -0.27 0.52 0.02 0.53 0.73 (0.021)
36 months -0.52 -0.60 -0.66 -0.31 1.00 -0.48 -0.54 -0.17 0.54 0.70 0.65 (0.023)
48 months 0.27 0.19 -0.03 -0.52 -0.48 1.00 0.46 -0.50 -0.23 1.00 0.50 (0.026)
60 months 0.37 0.36 0.22 -0.27 -0.54 0.46 1.00 -0.42 -0.27 0.51 0.73 (0.020)
72 months 0.15 0.24 0.41 0.52 -0.17 -0.50 -0.42 1.00 -0.59 0.60 0.70 (0.022)
120 months -0.43 -0.45 -0.39 0.02 0.54 -0.23 -0.27 -0.59 1.00 0.33 0.84 (0.017)

ASSF
3 months 1.00 0.95 0.81 0.37 0.53 0.39 0.29 0.31 0.21 2.16 -0.08 (0.030)
6 months 0.95 1.00 0.91 0.39 0.54 0.39 0.30 0.37 0.26 2.38 -0.19 (0.030)
12 months 0.81 0.91 1.00 0.34 0.48 0.32 0.30 0.41 0.33 2.78 -0.29 (0.028)
24 months 0.37 0.39 0.34 1.00 0.91 0.63 0.54 0.49 0.30 2.64 -0.32 (0.029)
36 months 0.53 0.54 0.48 0.91 1.00 0.88 0.41 0.22 0.05 2.74 -0.37 (0.028)
48 months 0.39 0.39 0.32 0.63 0.88 1.00 0.12 -0.23 -0.34 2.32 -0.31 (0.028)
60 months 0.29 0.30 0.30 0.54 0.41 0.12 1.00 0.41 0.26 2.64 -0.32 (0.029)
72 months 0.31 0.37 0.41 0.49 0.22 -0.23 0.41 1.00 0.70 2.43 -0.26 (0.029)
120 months 0.21 0.26 0.33 0.30 0.05 -0.34 0.26 0.70 1.00 2.18 -0.09 (0.030)
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Table 5: Statistics of residuals b"t in the basic SSF and but in the augmented SSF for
the one factor commodity model
Covariance matrix DW Serial Correlation

Basic SSF
1 month 1.00 -0.39 -0.81 0.19 0.90 (0.018)
9 month -0.39 1.00 0.76 0.40 0.80 (0.024)
17 month -0.81 0.76 1.00 0.06 0.97 (0.011)

ASSF
1 month 1.00 0.79 0.81 1.65 0.17 (0.040)
9 month 0.79 1.00 0.99 1.40 0.30 (0.039)
17 month 0.81 0.99 1.00 1.39 0.30 (0.039)

Note that the Durbin-Watson (DW) statistic is about 1.43 for 1% signi�cant level. The
estimates of serial correlation b� are obtained from estimating "t = �"t�1 + et for each maturity
and the quantities in the brackets beside them are their estimated standard deviations. Boldface

denotes signi�cant at the 1% level.

Table 6: Statistics of residuals b"t in the basic SSF and but in the augmented SSF for
the two factor commodity model
Covariance matrix DW Serial correlation

Basic SSF
1 month 1.00 -0.79 0.25 0.92 0.54 (0.034)
9 months -0.79 1.00 -0.64 0.22 0.89 (0.018)
17 months 0.25 -0.64 1.00 0.48 0.76 (0.026)

ASSF
1 month 1.00 -0.99 -0.91 2.04 -0.02 (0.040)
9 months -0.99 1.00 0.90 2.03 -0.02 (0.041)
17 months -0.91 0.90 1.00 2.06 -0.03 (0.040)

models, and we use 1, 3, 6, 9, 12, 15, 17 months futures to estimate the three-factor models.

By assuming identical standard deviations for all contracts, we specify the covariance matrix of

measurement errors as R := �2"I3, where IM denotes M �M identity matrix, for the one and two

factor models. For the three factor model we allow di¤erent standard deviations for each contract;

i.e., R = diag(�21; :::; �
2
7). We report the measurement errors for the basic and our augmented SSF

in this section and the corresponding parameter estimates in Section 4.1.

Figures 1 to 3 in Section 1 show estimated measurement error series for the one, two and three

factor models. Tables 5 to 7 show the summary statistics of these residual estimates b"t for the
three models. From the correlation matrices and DW statistics, we see that strong cross-sectional

and serial correlation exists in the residuals, which violates the iid assumption of the basic SSF.
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Table 7: Statistics of residual b"t in the basic SSF and but in the augmented SSF for the
three factor model

Covariance matrix DW Serial correlation
Basic SSF

1 month 1.00 -0.20 -0.59 0.19 0.29 -0.13 -0.08 0.27 0.87 (0.020)
3 months -0.20 1.00 -0.29 -0.59 0.32 0.33 -0.34 1.48 0.26 (0.039)
6 months -0.59 -0.29 1.00 -0.27 -0.54 0.31 0.08 0.32 0.84 (0.022)
9 months 0.19 -0.59 -0.27 1.00 -0.39 -0.63 0.61 1.05 0.48 (0.036)
12 months 0.29 0.32 -0.54 -0.39 1.00 -0.17 -0.38 0.53 0.74 (0.028)
15 months -0.13 0.33 0.31 -0.63 -0.17 1.00 -0.79 0.71 0.65 (0.031)
17 months -0.08 -0.34 0.08 0.61 -0.38 -0.79 1.00 0.38 0.81 (0.024)

ASSF
1 month 1.00 -0.91 -0.49 -0.61 -0.18 -0.66 -0.41 2.04 -0.02 (0.041)
3 months -0.91 1.00 0.16 0.80 0.15 0.79 0.30 2.08 -0.04 (0.041)
6 months -0.49 0.16 1.00 -0.15 -0.22 0.23 0.22 2.00 0.00 (0.041)
9 months -0.61 0.80 -0.15 1.00 -0.23 0.43 0.57 2.27 -0.13 (0.039)
12 months -0.18 0.15 -0.22 -0.23 1.00 0.12 -0.39 2.26 -0.13 (0.040)
15 months -0.66 0.79 0.23 0.43 0.12 1.00 -0.27 2.06 -0.03 (0.040)
17 months -0.41 0.30 0.22 0.57 -0.39 -0.27 1.00 2.16 -0.08 (0.041)

In summary, cross-sectional and serial correlations commonly appear to exist in the measure-

ment errors of both the interest rate and commodity futures models. This is not surprising as

various researchers, such as Eraker (2004) and Casassus and Collin-Dufresne (2005), have shown

that various EAM based asset pricing models consistently overprice or underprice certain contracts.

In particular, this can be a consequence of serial correlation.

3.2 Impact of cross-sectional and serial correlations on parameter es-

timates

In order to study how contemporaneous cross-sectional and serial measurement error correlations

a¤ect the parameter estimates, we perform Monte Carlo experiments for an EAM. Because a

maximization routine must be invoked on each sample path of the Monte Carlo experiment, the

computational load is heavy. We thus estimate the two factor Gibson-Schwartz (GS) commodity

model in the simulation, and only three contracts are simulated, namely, 1, 9 and 17 months

futures. Another reason for using this model is that one of the latent factors follows a mean-
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reverting Ornstein-Uhlenbeck process while the other follows a Brownian motion, so that we can

study the behavior of these two di¤erent processes in a single model.

The simulated data were constructed as follows. We �rst simulate the latent factor processes

with speci�ed parameters using the Euler discretization scheme with a weekly time step for the

transition equation (9), and then we calculate from (6) the 1, 9, 17 month futures prices. Cross-

sectionally and serially correlated measurement errors are generated from

"t = �"t�1 + ut; (11)

where � is a 3� 3 matrix and ut is a 3� 1 random vector distributed joint normally with mean

0 and covariance matrix �. The matrices � and � are speci�ed as

� := �2u

0BBBB@
1 ��c �c

��c 1 ��c
�c ��c 1

1CCCCA � :=

0BBBB@
�s 0 0

0 �s 0

0 0 �s

1CCCCA ; (12)

where �c (�1 � �c � 1), �s (�1 � �s � 1) and �u := 0:01 are constants10. From (12) we assume

that the short and long futures measurement errors tend to move similarly but opposite to that

of the middle (9 month) future. This allows for the e¤ects of futures curves in backwardation or

contango with possible kinks. We also assume that all three contract measurement errors follow

a �rst order autoregressive structure with the same mean-reversion speed �s.

We divide our measurement error simulation experiments into three groups. In the �rst group,

we assume no serial correlation (i.e. � := 0) but that there is contemporaneous cross-sectional

correlation, with the correlation coe¢ cient �c set to 0:1, 0:5 or 0:9. In the second group, we

assume no cross-sectional correlation (i.e. � = 0), but that there is serial correlation, with the

auto-correlation coe¢ cient �s set to 0:1, 0:5 or 0:9. In the third group, we assume both serial and

cross-sectional correlation with the pair (�c; �s) set to (0:9; 0:9), (0:5; 0:9) or (0:9; 0:5). For each

10Note for di¤erent �c we must check to see that the covariance matrix � is positive de�nite.
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Figure 4: The simulated measurement errors, with �s = 0:9, �c = 0:9:

experiment we conduct 200 replications for a sample size of 500 weekly observations. Figure 4

shows a 500 observation sample path when �s := 0:9, �c := 0:9.

After obtaining the simulated data for each experiment, we estimate the GS model parameters

for each of the 200 sample paths assuming the measurement errors covariance matrix R := �"I3.

The parameters are estimated using the EM algorithm with the likelihood calculated at each iter-

ation using the Kalman �lter. The hypothetical true parameters and several descriptive statistics

of their Monte Carlo estimates are reported in Tables 8, 9 and 10.

Based on the simulation results for Group 1 we see that, although the existence of contempora-

neously correlated errors violates the standard SSF assumptions, the model parameter estimates

are still reasonable. The mean and median of the simulated estimator distributions are quite close

to the true model parameters, and their standard deviation is also relatively small. The estimation

bias decreases with the cross-sectional correlation coe¢ cient �c. Note that the risk premia esti-

mates for �1 and �2 have relatively larger standard deviations than the other parameters, which is
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Table 8: Parameter estimates from simulated data for Group 1
Case 1: �c = 0:9; �s = 0

True value median mean std dev quantiles 5%, 25%, 75%, 95%
k 1.00 1.031 1.030 0.048 0.956 0.996 1.060 1.106
�1 0.3 0.282 0.283 0.013 0.262 0.275 0.292 0.305
�2 0.3 0.267 0.269 0.016 0.240 0.259 0.280 0.295
�1 0.2 0.191 0.189 0.082 0.034 0.146 0.234 0.325
�2 0.1 0.093 0.092 0.091 -0.051 0.032 0.134 0.262
� 0.9 0.927 0.937 0.103 0.908 0.919 0.934 0.944
� 0.1 0.104 0.104 0.009 0.093 0.100 0.109 0.114

Case 2: �c = 0:5; �s = 0
k 1.00 1.013 1.019 0.043 0.943 0.994 1.049 1.094
�1 0.3 0.291 0.290 0.011 0.271 0.283 0.298 0.307
�2 0.3 0.279 0.279 0.014 0.253 0.271 0.287 0.302
�1 0.2 0.197 0.192 0.089 0.040 0.144 0.229 0.342
�2 0.1 0.097 0.091 0.092 -0.067 0.034 0.136 0.229
� 0.9 0.920 0.924 0.071 0.900 0.912 0.927 0.936
� 0.1 0.103 0.103 0.006 0.094 0.099 0.106 0.112

Case 3: �c = 0:1; �s = 0
k 1.00 1.009 1.008 0.041 0.935 0.983 1.033 1.078
�1 0.3 0.297 0.298 0.010 0.282 0.289 0.305 0.313
�2 0.3 0.294 0.294 0.015 0.267 0.283 0.304 0.317
�1 0.2 0.194 0.196 0.077 0.072 0.168 0.225 0.328
�2 0.1 0.101 0.098 0.075 -0.034 0.072 0.128 0.225
� 0.9 0.907 0.905 0.012 0.884 0.897 0.914 0.924
� 0.1 0.100 0.100 0.005 0.092 0.097 0.104 0.108
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Table 9: Parameter estimates from simulated data for Group 2
Case 1: �c = 0; �s = 0:9

True value median mean std dev quantiles 5%, 25%, 75%, 95%
k 1.00 0.974 0.997 0.246 0.634 0.802 1.158 1.429
�1 0.3 0.271 0.272 0.012 0.253 0.263 0.281 0.293
�2 0.3 0.266 0.272 0.042 0.206 0.243 0.299 0.348
�1 0.2 0.199 0.194 0.092 0.032 0.132 0.252 0.336
�2 0.1 0.087 0.093 0.102 -0.085 0.029 0.157 0.265
� 0.9 0.901 0.902 0.015 0.873 0.893 0.912 0.927
� 0.1 0.107 0.104 0.031 0.058 0.085 0.124 0.154

Case 2: �c = 0; �s = 0:5
k 1.00 1.002 0.999 0.065 0.887 0.951 1.042 1.108
�1 0.3 0.293 0.293 0.010 0.276 0.286 0.299 0.314
�2 0.3 0.291 0.291 0.017 0.263 0.279 0.302 0.316
�1 0.2 0.205 0.210 0.100 0.042 0.156 0.264 0.381
�2 0.1 0.108 0.118 0.096 -0.045 0.070 0.173 0.274
� 0.9 0.902 0.902 0.012 0.884 0.893 0.911 0.921
� 0.1 0.101 0.102 0.007 0.090 0.097 0.107 0.112

Case 3: �c = 0; �s = 0:1
k 1.00 1.000 0.999 0.035 0.935 0.978 1.021 1.056
�1 0.3 0.297 0.298 0.010 0.280 0.291 0.305 0.317
�2 0.3 0.298 0.298 0.014 0.271 0.288 0.306 0.321
�1 0.2 0.198 0.195 0.089 0.022 0.154 0.234 0.349
�2 0.1 0.095 0.094 0.087 -0.053 0.049 0.138 0.235
� 0.9 0.899 0.899 0.011 0.883 0.891 0.906 0.919
� 0.1 0.100 0.100 0.005 0.092 0.097 0.104 0.108
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Table 10: Parameter estimates from simulated data for Group 3
Case 1: �c = 0:9; �s = 0:9

True value median mean std dev quantiles 5%, 25%, 75%, 95%
k 1.00 1.113 1.177 0.513 0.486 0.806 1.448 1.985
�1 0.3 0.252 0.253 0.017 0.229 0.239 0.263 0.281
�2 0.3 0.259 0.274 0.093 0.169 0.207 0.313 0.421
�1 0.2 0.186 0.194 0.115 -0.017 0.124 0.270 0.384
�2 0.1 0.093 0.103 0.164 -0.131 -0.008 0.183 0.361
� 0.9 0.920 0.918 0.016 0.891 0.906 0.930 0.943
� 0.1 0.119 0.117 0.071 0.020 0.087 0.150 0.183

Case 2: �c = 0:9; �s = 0:5
k 1.00 1.035 1.058 0.103 0.916 0.994 1.107 1.246
�1 0.3 0.277 0.278 0.012 0.256 0.269 0.285 0.300
�2 0.3 0.266 0.268 0.022 0.237 0.254 0.281 0.301
�1 0.2 0.197 0.195 0.100 0.034 0.136 0.246 0.360
�2 0.1 0.100 0.100 0.106 -0.080 0.033 0.161 0.280
� 0.9 0.925 0.944 0.143 0.901 0.917 0.934 0.945
� 0.1 0.107 0.107 0.011 0.090 0.100 0.114 0.123

Case 3: �c = 0:5; �s = 0:9
k 1.00 1.070 1.163 0.496 0.512 0.830 1.403 2.086
�1 0.3 0.259 0.258 0.015 0.233 0.248 0.267 0.283
�2 0.3 0.256 0.280 0.091 0.184 0.223 0.314 0.439
�1 0.2 0.200 0.199 0.103 0.023 0.131 0.259 0.371
�2 0.1 0.091 0.087 0.158 -0.122 0.013 0.163 0.300
� 0.9 0.911 0.911 0.017 0.880 0.900 0.923 0.935
� 0.1 0.116 0.104 0.105 0.036 0.093 0.139 0.176
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consistent with risk premia estimates in the literature on commodity futures, for example, those

in Schwartz (1997) and Schwartz and Smith (2000).

The results from the Group 2 experiments show that model parameter estimation becomes

more inaccurate as the serial correlation increases. A comparison of Case 1 in Groups 1 and

2 shows that large serial correlation coe¢ cient �s does in�uence the parameter estimates. For

Case 1 of Group 2, the serial correlation mainly in�uences the estimates of the mean-reverting

convenience yield process parameters, i.e. the mean-reverting speed k, the long-run mean � and

the volatility �2, by increasing their standard deviations, although the mean and median estimates

are still adequate. Hence, �, k and �2 cannot be precisely estimated in this case. For instance,

in Case 1, the standard deviation of k increases �vefold from about 0.05 in Group 1 to 0.25 in

Group 2, from 0.009 to 0.031 for � and from 0.015 to 0.042 for �2. This is easy to understand, in

that the basic SSF estimation algorithm cannot tell whether the mean-reversion of futures prices

(about an exponential trend) comes from the measurement errors or from the true convenience

yield process.

In the Group 3 experiments, we see that the presence of the cross-sectional errors ampli�es

the autocorrelation estimation bias. For instance, in Cases 1 and 3, there is more than a 50%

probability that the estimated mean-reversion speed k̂ is not within the (0.81, 1.45) interval whose

end points correspond respectively to 5.7 and 10.3 month half lives. More importantly, �̂1 and

�̂2 also have a large estimation bias which makes the basic SSF estimates unacceptable. In Case

2, although the cross-sectional correlation is large (0.9), the relatively small serial correlation �s

allows the basic parameter estimation procedure to perform reasonably well.

Therefore, the main issue regarding measurement errors is serial correlation, which primarily

a¤ects the parameters in mean-reverting processes (i.e., the convenience yield process in the GS

model) and also the other parameters when the errors are contemporaneously cross-sectionally

correlated as well. We advance a solution to this problem in the next section.
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4 The Augmented State Space Form

Because contemporaneous cross-sectional and, particularly, serial measurement error correlations

cause substantial imprecision in parameter estimation, we propose in this section a new SSF �

based on the simple observation that the measurement error process is also unobservable � to

address the problem.

We de�ne the new state vector X in terms of the Y and ", i.e., X t :=

�
Y t

"t

�
, and assume

that "t follows a �rst order11 vector auto-regressive process "t = �"t�1 +ut, as in (11). Thus, the

state space equations (9) and (10) become

X t = f +GXt�1 +wt (13)

Z t = A+ CX t; (14)

where f :=
�
d

0

�
is a (N +M) � 1 vector, G :=

0B@ � 0

0 �

1CA is an (N +M) � (N +M) matrix,

C :=
�
B IM

�
is an M � (N +M) matrix and wt :=

�
�t
ut

�
is an (N +M) � 1 measurement

error random vector with a joint normal distribution with zero mean and covariance matrix

� :=

0B@ 	 0

0 �

1CA ;

where 	 and � are respectively the covariance matrices for �t and ut. The new state-space

equations (13) and (14) allow the measurement errors "t to be both serially and cross-sectionally

correlated. We term this SSF speci�cation the augmented state space form (ASSF).

Obviously the ASSF nests the basic SSF, for which � = 0 and � is a diagonal matrix. Note

that in the ASSF the pricing error ["t]i can be considered to be an idiosyncratic factor that only

a¤ects the ith contract. By contrast, from (6) and (14) we see that the latent factors Y t determine

11Of course, at the expense of more parameters to estimate, any ARMA or ARIMA measurement error process
could be speci�ed and the same idea employed.
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(or price) all contracts Z t at time t and thus are common factors. To avoid confusion when we

discuss ASSF factors in the sequel, we refer only to the common factors Y t. In the next two

sections we present estimation results using both simulated and actual market data.

4.1 Simulated data estimates

The measurement errors are assumed to be speci�ed by (11) with� := �sI3 and � := �u

0BBBB@
1 �12 �13

�12 1 �23

�13 �23 1

1CCCCA.
Tables 11 and 12 show the results. Since we have seen that cross-sectional error correlations min-

imally a¤ect the model parameter estimates, we omit Group 1 in the simulated dataset and use

only Groups 2 and 3. We see from Table 11 that relative to Table 9 the ASSF provides reasonably

good estimates for the GS model for Group 2, as re�ected in the relatively smaller values for the

standard deviations of k̂, �̂ and �̂2. For Group 3, we also see in Table 12 relatively smaller standard

deviations for nearly all the parameters than in Table 10. More importantly, the estimates of �1

and �2 are not biased. Therefore, we may conclude that the augmented SSF is potentially better

than the basic SSF for estimating EAM parameters.

4.2 Market data estimates

We now re-estimate the one, two and three factor commodity models using the market data

of Section 3.1. For the measurement error structure we assume as above � := �sI3 and � :=

�u

0BBBB@
1 �12 �13

�12 1 �23

�13 �23 1

1CCCCAfor the one and two factor models and use 1, 9, 17 month futures prices to
estimate the models�parameters.
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Table 11: ASSF parameter estimates for Group 2
Case 1: �c = 0; �s = 0:9

True value median mean std dev quantiles 5%, 25%, 75%, 95%
k 1.00 1.010 1.013 0.130 0.809 0.910 1.090 1.250
�1 0.3 0.300 0.300 0.010 0.283 0.292 0.306 0.316
�2 0.3 0.302 0.303 0.026 0.262 0.283 0.315 0.349
�1 0.2 0.208 0.202 0.095 0.042 0.135 0.273 0.350
�2 0.1 0.100 0.105 0.105 -0.069 0.026 0.175 0.284
� 0.9 0.900 0.900 0.011 0.883 0.893 0.907 0.917
� 0.1 0.100 0.097 0.024 0.057 0.080 0.114 0.136

Case 2: �c = 0; �s = 0:5
k 1.00 1.005 1.002 0.064 0.889 0.953 1.047 1.099
�1 0.3 0.299 0.299 0.010 0.283 0.292 0.305 0.319
�2 0.3 0.299 0.300 0.017 0.271 0.288 0.311 0.326
�1 0.2 0.212 0.211 0.106 0.043 0.126 0.276 0.381
�2 0.1 0.120 0.118 0.103 -0.045 0.042 0.185 0.288
� 0.9 0.899 0.899 0.011 0.881 0.892 0.907 0.920
� 0.1 0.100 0.100 0.007 0.088 0.095 0.105 0.111

Case 3: �c = 0; �s = 0:1
k 1.00 1.000 0.999 0.034 0.938 0.978 1.021 1.057
�1 0.3 0.298 0.299 0.010 0.281 0.292 0.306 0.318
�2 0.3 0.299 0.299 0.014 0.274 0.289 0.308 0.321
�1 0.2 0.194 0.195 0.100 0.014 0.134 0.261 0.349
�2 0.1 0.089 0.095 0.097 -0.060 0.033 0.162 0.244
� 0.9 0.899 0.899 0.011 0.882 0.891 0.907 0.920
� 0.1 0.100 0.100 0.005 0.092 0.097 0.103 0.107
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Table 12: ASSF parameter estimates for Group 3
Case 1: �c = 0:9; �s = 0:9

True value median mean std dev quantiles 5%, 25%, 75%, 95%
k 1.00 1.051 1.089 0.220 0.786 0.939 1.207 1.508
�1 0.3 0.299 0.299 0.012 0.280 0.290 0.307 0.319
�2 0.3 0.302 0.305 0.039 0.246 0.278 0.326 0.373
�1 0.2 0.207 0.210 0.111 0.014 0.140 0.283 0.399
�2 0.1 0.111 0.120 0.135 -0.079 0.027 0.219 0.360
� 0.9 0.910 0.913 0.018 0.889 0.900 0.923 0.946
� 0.1 0.103 0.099 0.038 0.033 0.075 0.123 0.157

Case 2: �c = 0:9; �s = 0:5
k 1.00 1.018 1.030 0.088 0.903 0.973 1.089 1.180
�1 0.3 0.299 0.299 0.011 0.280 0.292 0.306 0.319
�2 0.3 0.300 0.302 0.020 0.272 0.286 0.316 0.333
�1 0.2 0.199 0.199 0.105 0.039 0.126 0.266 0.370
�2 0.1 0.093 0.102 0.108 -0.072 0.031 0.176 0.278
� 0.9 0.902 0.902 0.012 0.884 0.895 0.909 0.922
� 0.1 0.102 0.101 0.009 0.085 0.095 0.107 0.115

Case 3: �c = 0:5; �s = 0:9
k 1.00 1.060 1.102 0.222 0.808 0.933 1.237 1.553
�1 0.3 0.298 0.299 0.010 0.282 0.292 0.306 0.315
�2 0.3 0.304 0.308 0.034 0.260 0.280 0.327 0.370
�1 0.2 0.215 0.214 0.101 0.045 0.142 0.277 0.386
�2 0.1 0.115 0.115 0.125 -0.084 0.033 0.196 0.322
� 0.9 0.909 0.911 0.023 0.876 0.894 0.926 0.950
� 0.1 0.104 0.100 0.033 0.040 0.081 0.119 0.154
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For the three factor model, we assume � := �sI7 and a covariance matrix of the form

� :=

0BBBB@
�2u;1 ::: �17�u;1�u;7
...

. . .
...

�17�u;1�u;7 : : : �2u;7

1CCCCA :

Because this general form of � has too many (21) correlation parameters �ij, we need to

simply its structure. While it might seem expedient to assume that the correlations of all pairs are

identical, one month futures prices show behaviour di¤erent from that of longer maturity contracts

(Dempster et al., 2009). Thus the correlation structure is speci�ed as

�i;j =

8><>:
�1 (i or j = 1; i 6= j)

�2 (i � 2; j � 2; i 6= j):

Tables 13 to 15 show the estimation results for the three commodity models separately. We see

that large di¤erences exist between the basic SSF and ASSF estimates for the one-factor model.

Similarly, signi�cant di¤erences in the parameter estimates are also present in the two and three

factor models, especially for the parameter k in the two-factor model and for its counterparts kx

and ky in the three-factor model. These estimates increase by 22%, 23% and 35% respectively

in the ASSF over those of the basic SSF. The estimates of �2 in the two-factor model and those

of �x and �y in the three factor model are also signi�cantly di¤erent in the two SSFs. Because

the augmented SSF nests the basic SSF12, the likelihood ratio (LR) test is su¢ cient to indicate

which SSF is indeed statistically better and the test statistics indicate that the augmented SSF is

signi�cantly better than the basic SSF.13 Figure 5 plots the evolution of the residual ûts for the

two-factor GS model, while the statistics for the one, two and three factor models are summarized

in Tables 5 to 7 in Section 3.1. From the DW tests and the serial correlation coe¢ cients, we see

12They are equal for the one and two factor models when �s = �12 = �13 = �23 = 0 , and for the three-factor
model when �s = �1 = �2 = 0.
13The statistics for the LR tests greatly exceed the 1% signi�cant levels of the �2 distribution with 3 and 4

degrees of freedom (11.3 and 13.3) respectively.
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Table 13: One factor model estimates for the basic and augmented SSFs applied to
oil futures

Basic SSF ASSF
k 0.088 (0.0043) 1.018 (0.0521)
� 0.167 (0.0092) 0.300 (0.007)
� 0.417 (0.0433) 0.735 (0.198)
� 2.368 (0.0450) 0.485 (0.065)

�" (or �u) 0.060 (0.0114) 0.021 (0.0049)
�s � 0.990 (0.0032)
�12 � 0.765 (0.0294)
�13 � 0.812 (0.0480)
�23 � 0.989 (0.0053)

Loglikelihood 2244 4836
LR Stat (ASSF vs. Basic SSF ) 5184

Note that quantities in brackets denote standard deviations, �" is in the basic SSF and �u in the
ASSF. Boldface denotes signi�cant at the 1% con�dence level in the likelihood ratio test

(Chi-squared distribution with 4 degrees of freedom ) of the augmented model.

that the residual measurement error buts are not serially correlated. Thus, the estimation results
are consistent with the assumptions of the model.

For the three factor interest rate model, we use the same measurement error auto-correlation

structure as for the three factor commodity model. For the cross-sectional correlation structure,

in order to capture the impact of maturity on correlation structure, we classify the bonds into

three categories according to the time to maturity: short-term (3,6,12 months), mid-term (24,36,48

months) and long-term (60,84,120 months) bonds. We assume that the cross-sectional correlations

within the same category are identical, which is denoted as �1; correlations between di¤erent

categories are respectively denoted as �2, �3 and �4, which are the ones between short- and mid-

term, between mid- and long- term and between short- and long-term bonds, accordingly. For

the generalized Vasicek model, the estimates in Table 16 for both ks and kl increase by 60%, and

that for kr decreases 35%, for the ASSF relative to those for the basic SSF. The estimates of �1

and �3 are signi�cantly di¤erent for the two SSFs. Similarly, for the A1;DS and A2;DS models, the

estimates for the ASSF (shown in Tables 17 and 18) are quite di¤erent with those for the basic

SSF. For all three models, the statistics of the residual buts for the ASSF are summarized in Tables
2 to 4 of Section 3.1. These do not show large positive autocorrelation as in the basic SSF, but
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Table 14: Two factor model estimates for the basic and augmented SSFs applied to
oil futures

Basic SSF ASSF
k 1.123 (0.032) 1.369 (0.052)
�1 0.339 (0.011) 0.357 (0.011)
�2 0.334 (0.014) 0.397 (0.020)
�1 0.302 (0.101) 0.292 (0.113)
�2 0.142 (0.100) 0.175 (0.138)
� 0.924 (0.0086) 0.924 (0.007)
� -0.004 (0.0052) 0.006 (0.016)

�" (or �u) 0.012 (0.0025) 0.006 (0.000)
�s � 0.953 (0.013)
�12 � -0.980 (0.002)
�13 � -0.824 (0.002)
�23 � 0.806 (0.003)

Loglikelihood 4094 4875
LR Stat (ASSF vs. Basic SSF ) 1562

they do exhibit small negative autocorrelations which is likely due to the rather crude speci�cation

of the contemporaneous cross-sectional correlation structure of the measurement errors. However,

for the most part of Durbin-Watson statistics are not signi�cant particularly for the A1;DS(3)

model. From the likelihood ratio test, the ASSF is very signi�cantly better than the basic SSF

for all three models. Again, for the A1;DS(3) model, the improvement is an order of magnitude in

the likelihood ratio test statistic over the other two models.

In summary, for both the actual market and simulated data, we can see that the ASSF performs

reasonably well in estimating EAMs and much better than the basic SSF.

5 Conclusion

This paper focusses on how measurement errors a¤ect parameter estimates in exponential a¢ ne

factor models. Investigating measurement errors in three three-factor yield curve models, and one,

two and three factor commodity futures models, we �nd that residual measurement errors are not

independently and identically distributed but rather show strong contemporaneous cross-sectional

and serial correlations. This is inconsistent with the usual iid assumptions in many studies employ-
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Table 15: Three factor model estimates for the basic and augmented SSFs applied to
oil futures

Basic SSF ASSF
kx 2.264 (0.0773) 2.786 (0.0640)
ky 0.637 (0.0362) 0.865 (0.0176)
u 0.023 (0.0053) 0.002 (0.0057)
�x 0.250 (0.0455) 0.221 (0.0055)
�y 0.321 (0.0116) 0.308 (0.0092)
�p 0.172 (0.0065) 0.156 ( 0.0045)
�x -0.020 (0.0317) -0.009 ( 0.0229)
�y 0.425 (0.1367) 0.536 (0.0042 )
�p 0.095 (0.0010) 0.236 (0.0010)
�xy -0.254 (0.0650) -0.207 (0.0288)
�xp 0.322 (0.0463) 0.271 (0.0330)
�yp -0.439 (0.0518) -0.145 ( 0.0181)
�s � 0.828 (0.0117)
�1 � -0.403 (0.078)
�2 � -0.005 (0.085)

�1(or �u;1) 0.0173 (0.0042) 0.0089 (0.0003)
�2(or �u;2) 0.0000 (0.0000) 0.0001 (0.0000)
�3(or �u;3) 0.0029 (0.0007) 0.0015 (0.0001)
�4(or �u;4) 0.0006 (0.0005) 0.0004 (0.0001)
�5(or �u;5) 0.0014 (0.0004) 0.0010 (0.0001)
�6(or �u;6) 0.0003 (0.0003) 0.0004 (0.0001)
�7(or �u;7) 0.0018 (0.0005) 0.0009 (0.0001)

Loglikelihood 15347 16668
LR Stat (ASSF vs. Basic SSF ) 2642
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Table 16: Three factor generalized Vasicek interest rate model estimates for the basic
and augmented SSFs

Basic SSF ASSF
ks 0.8250 (0.0578) 1.3363 (0.1195)
kl 0.0142 (0.0015) 0.0226 (0.0020)
kr 1.1815 (0.1022) 0.7699 (0.0519)
�1 0.0210 (0.0018) 0.0308 (0.0033)
�2 0.0101 (0.0003) 0.0110 (0.0003)
�3 0.0104 (0.0003) 0.0077 (0.0002)
us -0.1899 (0.0332) 0.0314 (0.0078)
ul 0.0049 (0.0000) 0.0016 (0.0002)

1 -0.4003 (0.2048) -0.3542 (0.2054)

2 -0.0580 (0.0788) 0.0386 (0.0961)

3 -0.7120 (0.2219) -0.8531 (0.2196)
�12 0.2204 (0.0533) 0.2613 (0.0395)
�13 -0.4080 (0.0323) -0.1395 (0.0384)
�23 0.0190 (0.0351) 0.2673 (0.0328)
�s � 0.7667 (0.0328)
�1 � 0.9253 (0.0058)
�2 � 0.5517 (0.0299)
�3 � 0.8671 (0.0150)
�4 � 0.5666 (0.0302)

�1(or �u;1) 0.00097 (0.00021) 0.00050 (0.00018)
�2(or �u;2) 0.00001 (0.00000) 0.00074 (0.00020)
�3(or �u;3) 0.00072 (0.00016) 0.00091 (0.00022)
�4(or �u;4) 0.00034 (0.00008) 0.00048 (0.00014)
�5(or �u;5) 0.00008 (0.00004) 0.00040 (0.00011)
�6(or �u;6) 0.00015 (0.00005) 0.00032 (0.00010)
�7(or �u;7) 0.00021 (0.00007) 0.00033 (0.00011)
�8(or �u;8) 0.00020 (0.00009) 0.00044 (0.00012)
�9(or �u;9) 0.00046 (0.00013) 0.00053 (0.00014)

Loglikelihood 57788 61454
LR Stat (ASSF vs. Basic SSF ) 7332
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Table 17: Three factor A1;DS(3) interest rate model estimates for the basic and
augmented SSFs

Basic SSF ASSF
a 0.0802 (0.0006) 0.2595 (0.0348)
k 0.3540 (0.0042) 0.2132 (0.0312)
u 0.0831 (0.0020) 0.6003 (0.18353)
� 0.0410 (0.0011) 0.0035 (0.0007)
v 0.0523 (0.0021) 0.0011 (0.0001)
� 0.2941 (0.0039) 0.0780 (0.0016)
� 0.0183 (0.0042) 0.0280 (0.0037)
b -0.0132 (0.0020) 0.0026 (0.0014)
�rv 0.1606 (0.0035) -0.1254 (0.2181)
c 0.0073 (0.0032) -0.1519 (0.0544)
�1 6.8730 (3.5396) -1.0708 (3.7815)
�2 -1.4138 (0.7281) -0.1604 (0.0655)
�3 0.2131 (0.0038) 0.2706 (0.1304)
�s � 0.9592 (0.0046)
�1 � 0.8390 (0.0125)
�2 � 0.1471 (0.0580)
�3 � 0.6738 (0.0340)
�4 � 0.3222 (0.0415)

�1(or �u;1) 0.00356 (0.00006) 0.00102 (0.00028)
�2(or �u;2) 0.00236 (0.00004) 0.00087 (0.00025)
�3(or �u;3) 0.00101 (0.00012) 0.00090 (0.00024)
�4(or �u;4) 0.00000 (0.00000) 0.00037 (0.00011)
�5(or �u;5) 0.00031 (0.00001) 0.00030 (0.00009)
�6(or �u;6) 0.00019 (0.00001) 0.00022 (0.00009)
�7(or �u;7) 0.00028 (0.00002) 0.00024 (0.00007)
�8(or �u;8) 0.00000 (0.0000) 0.00035 (0.00008)
�9(or �u;9) 0.00056 (0.00003) 0.00046 (0.00010)

Loglikelihood 52624 60448
LR Stat (ASSF vs. Basic SSF ) 14568
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Table 18: Three factor A2;DS(3) interest rate model estimates for the basic and
augmented SSFs

Basic SSF ASSF
a 0.0224 (0.0005) 0.0353 (0.0006)
k 0.2776 (0.0092) 0.4094 ( 0.0070)
u 0.0429 (0.0040) 0.1458 (0.0601)
� 0.0225 (0.0001) 0.0913 (0.0052)
v 0.0103 (0.0014) 0.0329 (0.0005)
� 0.2297 (0.0099) 0.3158 (0.0003)
� 0.0474 (0.0009) 0.0322 ( 0.0013)
k�v 0.1324 (0.0141) 0.1114 ( 0.0442)
krv 0.1298 (0.0211) 0.1379 ( 0.0236)
�rv -0.0942 (0.0297) 0.0843 ( 0.0145)
�1 -0.1348 (3.3137) -0.0011 (0.0010)
�2 0.2911 (0.7637) -0.0067 ( 0.0014)
�3 0.0766 (0.2874) -0.0018 ( 0.0013)
�s � 0.9292 ( 0.0161)
�1 � 0.7197 ( 0.0040)
�2 � 0.4014 (0.0902)
�3 � 0.3107 ( 0.0034)
�4 � 0.3016 ( 0.0046)

�1(or �u;1) 0.00387 (0.00082) 0.00259 (0.00016)
�2(or �u;2) 0.00265 (0.00057) 0.00188 (0.00012)
�3(or �u;3) 0.00129 (0.00029) 0.00120 (0.00023)
�4(or �u;4) 0.00027 (0.00006) 0.00029 (0.00002)
�5(or �u;5) 0.00009 (0.00004) 0.00000 (0.00000)
�6(or �u;6) 0.00014 (0.00003) 0.00017 (0.00002)
�7(or �u;7) 0.00021 (0.00005) 0.00019 (0.00001)
�8(or �u;8) 0.00009 (0.00004) 0.00026 (0.00001)
�9(or �u;9) 0.00039 (0.00008) 0.00040 (0.00004)

Loglikelihood 53155 57124
LR Stat (ASSF vs. Basic SSF ) 7938
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Figure 5: The measurement errors for the augmented state space form of the GS
commodity model

ing EAMs in the �xed income and commodity literature, such as Schwartz (1997), de Jong (2000)

and Chen and Scott (2003). By performing Monte Carlo simulations, we �nd that if no serial, but

only cross-sectional correlation exists, the usual basic SSF estimation procedure performs reason-

ably well. However, when serial correlation exists, the basic SSF estimation procedure performs

very poorly �especially regarding the estimation of the parameters of mean-reverting processes.

This is because the Kalman �lter estimation process cannot distinguish mean-reversion directly

due to the underlying process from that arising from measurement errors. To resolve this issue,

we propose an augmented SSF to replace the original and employ the Kalman �lter to estimate

the ASSF parameters using simulated and actual market data. The results demonstrate that the

new ASSF performs much better than the original SSF in estimating EAM parameters.
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Appendixes:

A Kalman Filter Parameter Estimation

All models in this paper are calibrated using a generalized iterative estimation and maximization

(EM) algorithm (Dempster et al., 1976, 1977) based on the Kalman �lter. Here we brie�y describe

this procedure of the Kalman �lter. Notice that the Kalman �lter estimates the linear and

Gaussian models as shown in (15) and (16), which are the transition and measurement equations,

respectively.

Y t = d+ �Yt�1 + �t (15)

Z t = A+ BYt + "t: (16)

For non-Gaussian models, the so-called extended Kalman �lter should be used. It �rst "normalizes"

the model by �nding the �rst two moments for the latent factors from their conditional density.

Thus, non-Gaussian models can be rewritten in the state-space form of (15) and (16) and the

standard Kalman �lter applied for model estimation. We refer readers to De Jong (2000), Chen

and Scott (2003), Du¤ee and Stanton (2004) for the detailed normalization procedure and the use

of extended Kalman �lters.

Given values for all parameters, after determining initial values for the latent factors the

Kalman �ltering procedure at each time step t can be conducted in three steps � prediction,

likelihood calculation and updating.

Initial conditions

Initial values of state vector bY0 and its variance bP0 must be speci�ed to use the Kalman �lter.
When the state variable process is stationary ergodic, the long-run mean and variance are usually

taken for bY0 and bP0 respectively. If the state variable process is not stationary, the initial valuebY0 is usually taken to be an unknown parameter of the model (to be estimated) and an arbitrary
large value (say 105) is used for bP0 (see Harvey 1989).
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Prediction

Ytjt�1 = d+ �bYt�1 (17)

Ptjt�1 = �bYt�1�0 + 
t: (18)

Incremental likelihood calculation

et = Zt �A� BYtjt�1

Vt = BPtjt�1B0 +R (19)

lnLt = �1
2
ln jVtj �

1

2
e0tV

�1
t et;

where Lt denotes the likelihood contribution at time t.

Updating

Kt = Ptjt�1B0V �1
tbYt = Ytjt�1 +Ktet (20)

bPt = (I �KtB)Ptjt�1

Note that the total log-likelihood L for the whole sample is calculated as

L(�) =

TX
t=1

lnLt(�);

where � denotes the full set of EAM parameters. Using a suitable global optimization algorithm

the optimal estimate �̂ is found for the current estimate Ŷ of the factor process evolution.

Set � := �̂ and repeat the estimation and maximization steps until convergence for �̂ (suitably

speci�ed) is achieved.
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B Three Factor Yield Curve Models

1) The Generalized Vasicek model

To do a cross-market robustness check, we estimate a three factor interest rate term structure

model speci�ed in the risk neutral measuqre as

dst = ks(�s � st)dt+ �1dW
Q
1

dlt = kl(�l � lt)dt+ �2dW
Q
2 (21)

drt = kr(st + lt � rt)dt+ �3dW
Q
3

E[dWQ
1 dW

Q
2 ] = �12dt; E[dWQ

1 dW
Q
3 ] = �13dt; E[dWQ

2 dW
Q
3 ] = �23dt;

where st and lt are assumed to represent respectively a long interest rate (or yield curve level)

and the (negative) slope of the yield curve with respect to a perceived instantaneous short interest

rate which the instantaneous short rate rt tracks. In the market measure (21) becomes

dst = [ks(�s � st) + �1
1]dt+ �1dW
P
1

dlt = [kl(�l � lt) + �2
2]dt+ �2dW
P
2 (22)

drt = [kr(st + lt � rt) + �3
3]dt+ �3dW
P
3

E[dW P
1 dW

P
2 ] = �12dt; E[dW P

1 dW
P
3 ] = �13dt; E[dW P

2 dW
P
3 ] = �23dt;

where 
1; 
2 and 
3 are risk premia.

Note that this model belongs to the A0(3) class of Dai and Singleton (2000) and so zero-coupon

yield and bond prices in terms of the factors can easily be obtained in closed form (see Medova et

al., 2006).

2) Dai-Singleton A1;DS(3) model

We choose the preferred model A1;DS(3) of Dai and Singleton (2000) as our A1(3) model.
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In the risk-neutral measure the process is speci�ed by

dvt = u (v � vt) dt+ �
p
vtdW

Q
1

d�t = a(� � �t)dt+ �dWQ
2 + c

p
vtdW

Q
3 (23)

drt = k (�t � rt) dt+ �rv
p
vtdW

Q
1 + bdWQ

2 +
p
vtdW

Q
3

E[dWQ
1 dW

Q
2 ] = 0; E[dWQ

1 dW
Q
3 ] = 0; E[dWQ

2 dW
Q
3 ] = 0:

In the market measure, the process satis�es

dvt = [uv + (�1� � u) vt] dt+ �
p
vtdW

P
1

d�t =
��
a� + ��2

�
+ �3cvt � a�t

�
dt+ �dW P

2 + c
p
vtdW

P
3 (24)

drt = [b�2 + (�rv�1 + �3) vt + k�t � krt] dt+ �rv
p
vtdW

P
1 + bdW P

2 +
p
vtdW

P
3

E[dW P
1 dW

P
2 ] = 0; E[dW P

1 dW
P
3 ] = 0; E[dW P

2 dW
P
3 ] = 0;

where �1
p
vt, �2 and �3

p
vt are risk premia.

3) Dai-Singleton A2;DS(3) model

We choose the preferred model A2;DS(3) of Dai and Singleton (2000) as our A2(3) model.

In the risk-neutral measure the process is speci�ed by

dvt = u (v � vt) dt+ �
p
vtdW

Q
1

d�t = a(� � �t)dt+ k�v (v � vt) dt+ �
p
�tdW

Q
2 (25)

drt = krv (v � vt) dt+ k (�t � rt) dt+ �rv
p
vtdW

Q
1 +

p
vtdW

Q
3
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E[dWQ
1 dW

Q
2 ] = 0; E[dWQ

1 dW
Q
3 ] = 0; E[dWQ

2 dW
Q
3 ] = 0:

In the market measure the process satis�es

dvt = [uv + (��1 � u) vt] dt+ �
p
vtdW

P
1

d�t =
��
a� + k�vv

�
� k�vvt + (��2 � a) �t

�
dt+ �

p
�tdW

P
2 (26)

drt = [krvv + (�1�rv + �3 � krv) vt + k�t � krt] dt+ �rv
p
vtdW

P
1 +

p
vtdW

P
3

E[dW P
1 dW

P
2 ] = 0; E[dW P

1 dW
P
3 ] = 0; E[dW P

2 dW
P
3 ] = 0;

where �1
p
vt, �2

p
�t and �3

p
vt are risk premia.
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C Commodity Futures Pricing Models

Here we set out the one, two and three factor models for commodity futures used in the paper. For

brevity we ignore many details. Interested readers may refer to Schwartz (1997) and Dempster,

Medova and Tang (2009) for these.

1) One Factor Model

The one factor model in the market measure is a geometric Ornstein-Uhlenbeck process given

by the solution of

dvt = k(�� vt)dt+ �dW P ; (27)

where vt is the logarithm of the spot price St. Assuming a constant risk premium �, the dynamics

under the risk-neutral measure follow

dvt = [k(�� vt)� �]dt+ �dWQ: (28)

2) Two Factor Model

In the market measure, the two factor (Gibson-Schwartz) model is speci�ed by

dvt = (r � �t �
1

2
�21 + �1)dt+ �1dW

P
1

d�t = k(� � �t)dt+ �2dW
P
2 (29)

E[dW P
1 dW

P
2 ] = �dt; (30)

where vt is the logarithm of the spot price St and �t is the convenience yield. By assuming

constant risk premia, the dynamics under the risk-neutral measure follow

dvt = (r � �t �
1

2
�21)dt+ �1dW

Q
1

d�t = [k(� � �t)� �2]dt+ �2dW
Q
2 (31)
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E[dWQ
1 dW

Q
2 ] = �dt: (32)

3) Three Factor Model

In the market measure, the three factor (Dempster-Medova-Tang) model is speci�ed by

dvt = (r � �t � 
t �
1

2
�21 + �1)dt+ �1dW

P
1

d�t = k�(�� �t)dt+ �2dW
P
2 (33)

d
t = �k

tdt+ �3dW
P
3

E[dW P
1 dW

P
2 ] = �12dt; E[dW P

1 dW
P
3 ] = �13dt; E[dW P

2 dW
P
3 ] = �23dt; (34)

where the convenience yield �t is decomposed into two mean reverting components, i.e., �t :=

�t + 
t.

The dynamics under the risk-neutral measure follow

dvt = (r � �t � 
t �
1

2
�21)dt+ �1dW

Q
1

d�t = [k�(�� �t)� �2]dt+ �2dW
Q
2 (35)

d
t = [�k

t � �3]dt+ �3dW
Q
3

E[dWQ
1 dW

Q
2 ] = �12dt; E[dWQ

1 dW
Q
3 ] = �13dt; E[dWQ

2 dW
Q
3 ] = �23dt: (36)

De�ning ln(St) := xt+yt+pt, as shown in Dempster, Medova and Tang (2009), (33) and (35)

are equivalent to the following dynamics in the market and risk-neutral measures respectively

dxt = �kxxtdt+ �xdW
P
x

dyt = �kyytdt+ �ydW
P
y (37)

dpt = udt+ �pdW
P
p

E[dW P
x dW

P
y ] = �xydt; E[dW P

x dW
P
p ] = �xpdt; E[dW P

y dW
P
p ] = �ypdt (38)

45



and

dxt = kx(�xt � �x)dt+ �xdW
Q
x

dyt = ky(�yt � �y)dt+ �ydW
Q
y (39)

dpt = (u� �p)dt+ �pdW
Q
p

E[dWQ
x dW

Q
y ] = �xydt; E[dWQ

x dW
Q
p ] = �xpdt; E[dWQ

y dW
Q
p ] = �ypdt: (40)

In this paper, we estimate the parameters of (37) and (39).

Note that the one, two and three factor models respectively belong to the A0(N); N = 1; 2; 3,

classes of Dai and Singleton (2000) and futures prices in terms of the factors are easily derived.

46


	cover2.pdf
	Measurement Error_20100412.pdf

